Skip to content

AI编程:第一个PyTorch程序

· 4 min

如需完成第一次作业,请光速开抄 PyTorch 文档:Training a Classifier

第一个 PyTorch 程序#

对于编写第一个PyTorch程序,推荐以下资源:

  1. PyTorch官方文档
  2. Deep Learning with PyTorch: A 60 Minute Blitz

计算机视觉、图像分类与 LeNet#

LeNet in PyTorch#

定义神经网络#

在PyTorch中,要定义一个神经网络,只需继承 nn.Module 类,在 __init__ 方法中定义各层,并在 forward 方法中定义前向传播逻辑。例如,LeNet可以这样实现:

import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()

nn.Sequential 可以

class LeNet(nn.Module):
def __init__(self):
super().__init__()
# Input: N x 3 x 32 x 32 (CIFAR-10)
self.features = nn.Sequential(
nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120),
nn.ReLU(inplace=True),
nn.Linear(120, 84),
nn.ReLU(inplace=True),
nn.Linear(84, 10),
)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return x

如你所见,你并不需要定义 backward 方法,这是因为 PyTorch 会通过自动微分(autograd)来处理反向传播。

加载数据#

使用 torchvision 库可以方便地加载和预处理图像数据集。

import torch
import torchvision
import torchvision.transforms as transforms # 图像预处理

下面的代码会自动下载 CIFAR-10 数据集,并进行预处理。这里的 transforms.Compose 用于将多个图像变换组合在一起。我们将图像转换为张量,并进行归一化处理。

NOTE

If running on Windows and you get a BrokenPipeError, try setting the num_worker of torch.utils.data.DataLoader() to 0.

transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
batch_size = 4
trainset = torchvision.datasets.CIFAR10(
root="./data", train=True, download=True, transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True, num_workers=2
)
testset = torchvision.datasets.CIFAR10(
root="./data", train=False, download=True, transform=transform
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False, num_workers=2
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')

损失函数和优化器#

定义损失函数和优化器。这里我们使用交叉熵损失函数(CrossEntropyLoss)和带有动量的随机梯度下降(SGD with momentum)。

import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

训练#

训练网络。我们将数据分成多个小批次(mini-batches),并在每个批次上进行前向传播、计算损失、反向传播和参数更新。

for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')

要保存模型,可以使用 torch.save

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

要加载模型权重,可以使用 torch.load

net = Net()
net.load_state_dict(torch.load(PATH, weights_only=True))

测试#

net = Net()
net.load_state_dict(torch.load(PATH, weights_only=True))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
for j in range(4)))
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# again no gradients needed
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')